The Minimally Invasive Supraorbital Subfrontal Key-Hole Approach for Surgical Treatment of Temporomesial Lesions of the Dominant Hemisphere

R. Reisch1,5, A. Stadie2, R. Kockro1, I. Gawish3, E. Schwandt1, N. Hopf4

Abstract

Introduction: Surgery in the temporomesial region is generally performed using a subtemporal, transtemporal, or pterional-transsylvian approach. However, these approaches may lead to approach-related trauma of the temporal lobe and frontotemporal operculum with subsequent postoperative neurological deficits. Iatrogenic traumatisation is especially significant if surgery is performed in the dominant hemisphere.

Methods: During a five-year period between January 2003 and December 2007, we have approached the temporomesial region in 21 cases via the supraorbital approach. In 15 cases, the lesion was located within the dominant hemisphere, all lesions had space-occupying effects. In all cases, meticulous approach planning was performed, demonstrating a close proximity of the lesion to the pial surface on the upper anterior mesial aspect of the temporal lobe. An extension within the parahippocampal gyrus or with deep temporobasal tumor growth below the sphenoid wing were considered as exclusion criteria for using the supraorbital approach.

Results: In all cases surgery was performed without intraoperative complications. Pathological investigation showed 7 low-grade astrocytomas, 4 high-grade astrocytomas, 2 gangliogliomas and 2 cavernomas. Early postoperative MRI scans confirmed a complete removal of the lesion in 14 cases. In one case of a subtotal resection, the residual tumor was removed through a posterior subtemporal approach. The postoperative neurological examination was unchanged in 14 cases. In one case a transient hemiparesis was observed. In patients with dominant-sided lesions no speech or mental deficits were present.

Conclusion: In selected cases, the minimally invasive supraorbital craniotomy offers excellent surgical efficiency in the temporomesial region with no approach-related morbidity compared to a standard transtemporal or pterional-transsylvian approach.

Introduction

Temporomesial lesions comprise a common dilemma for surgical resection, especially if located within the dominant side [1–4]. As a general rule, subtemporal, transtemporal or pterional-transsylvian approaches are used to expose the temporomesial area; however, these approaches may result in surgical traumatization of the frontal or temporal lobe, not related to the lesion itself [5–7]. This iatrogenic traumatization of eloquent neural tissue may cause severe postoperative neurological deficits [8–10].

However, critical analysis of the anatomic relationship of the temporal lobe to the skull base reveals that the temporomesial area can effectively be exposed from the anterior subfrontal direction. Compared with the subtemporal, transtemporal and pterional-transsylvian approaches, the subfrontal route offers optimal exposure of the anterio-superior temporomesial structures without transcortical access and without the necessity to open the Sylvian fissure (Fig. 1). Thus, intracranial lesions located within the anterio-superior mesial part of the temporal lobe may sufficiently be approached through a subfrontal supraorbital craniotomy, without retraction and injury of the frontotemporal operculum and temporal cortex.
In this article, we describe our surgical experience with patients suffering from antero-superior located temporomesial lesions of the dominant hemisphere, treated successfully via a subfrontal supraorbital approach (Fig. 2). After precise preoperative planning, the supraorbital craniotomy was performed in selected cases with lesions showing a close proximity to the pial surface only on the anteromesial surface of the temporal lobe.

Patients and Methods

Between January 2003 and December 2007, we have used the supraorbital subfrontal approach in 15 cases, exposing various temporomesial lesions (Table 1). This clinical series was evaluated retrospectively, reviewing office charts, medical reports and diagnostic images.

We operated 9 female and 6 male patients. The age range of the patients was from 19 years to 64 years.

The predominant preoperative clinical finding was epileptic seizure in 13 of 15 patients, one patient revealed mild hemiparesis. An initial clinical examination without pathological findings was found in 2 of 15 cases.

In all cases, for precise preoperative planning high-resolution cranial magnetic resonance imaging (MRI) and computed tomography (CT) were carried out. In 4 cases the individual pathoanatomic situation was preoperatively analyzed using a virtual reality (VR) workstation (Dextroscope of Volume Interactions Pte Ltd., Singapore). We used this technology of VR surgery planning in those cases where successful surgery seemed critical using a supraorbital approach.

The criterion for using the supraorbital subfrontal exposure was a strict anterior temporomesial localization of the lesion, demonstrating a close proximity to the pial surface on the upper anterior mesial aspect of the dominant hemispheric temporal lobe. A posterior mesial or deep temporobasal extension below the sphenoid wing was an exclusion criterion for this approach. The supraorbital approach was only performed when the analysis of the preoperative images depicted clearly that a complete resection of the lesion could be achieved, allowing a maximally effective and minimally invasive surgical therapy.

Surgical technique demonstrated by an illustrative case

This 37-year-old woman was admitted to a neurological department after an epileptic seizure. The neurological examination revealed no deficits. Initial diagnostics included a contrast-enhanced MRI of the brain showing a left sided temporal cavernoma (Fig. 3A). For exact preoperative planning of the optimal surgical exposure, the MRI and CT data were transferred to a virtual reality workstation.

The three-dimensional VR planning revealed a close proximity of the lesion to the cortical surface of the anterosuperior temporomesial area (Fig. 4), allowing safe and effective exposure via a subfrontal approach. According to increasing epileptic seizures and space-occupying effects, the indication for surgery was given. The removal of the lesion was supplemented by using intraoperative neuronavigation (BrainLAB, Feldkirchen, Germany).

The patient was placed in a supine position, the head elevated approximately 15°, rotated 15° to the opposite side and retroflected about 20°. The head elevation facilitated venous drainage; the moderate rotation offered an ergonomic working position during surgery and optimal exposure of the ipsilateral...
Table 1 Patients presentation.

<table>
<thead>
<tr>
<th>Age, sex</th>
<th>Preoperative neurological status</th>
<th>Postoperative neurological status</th>
<th>Tumor removal</th>
<th>Histopathology</th>
<th>Size</th>
<th>Location of the lesion</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>33, F</td>
<td>seizures</td>
<td>no deficit</td>
<td>complete</td>
<td>astrocytoma II.</td>
<td>2 cm</td>
<td>uncus</td>
<td>solid</td>
</tr>
<tr>
<td>44, F</td>
<td>seizures</td>
<td>no deficit</td>
<td>residual tumor</td>
<td>astrocytoma III.</td>
<td>4 cm</td>
<td>PH gyrus</td>
<td>sol>cy s</td>
</tr>
<tr>
<td>26, M</td>
<td>NPF</td>
<td>no deficit</td>
<td>complete</td>
<td>astrocytoma II.</td>
<td>2.5 cm</td>
<td>uncus</td>
<td>solid>cy s</td>
</tr>
<tr>
<td>29, M</td>
<td>seizures</td>
<td>no deficit</td>
<td>complete</td>
<td>astrocytoma II.</td>
<td>2 cm</td>
<td>MTP</td>
<td>sol>cy s</td>
</tr>
<tr>
<td>43, F</td>
<td>seizures</td>
<td>HP</td>
<td>no deficit</td>
<td>astrocytoma III.</td>
<td>4 cm</td>
<td>TM</td>
<td>sol</td>
</tr>
<tr>
<td>60, F</td>
<td>seizures</td>
<td>no deficit</td>
<td>PC, recurrence</td>
<td>glioblastoma</td>
<td>3 cm</td>
<td>uncus</td>
<td>cy s>sol</td>
</tr>
<tr>
<td>64, M</td>
<td>NPF</td>
<td>no deficit</td>
<td>complete</td>
<td>astrocytoma II.</td>
<td>3 cm</td>
<td>MTP</td>
<td>sol</td>
</tr>
<tr>
<td>51, F</td>
<td>seizures</td>
<td>no deficit</td>
<td>complete</td>
<td>astrocytoma II.</td>
<td>3.5 cm</td>
<td>TM</td>
<td>sol>cy s</td>
</tr>
<tr>
<td>22, M</td>
<td>seizures</td>
<td>no deficit</td>
<td>PC, recurrence</td>
<td>glioblastoma</td>
<td>3 cm</td>
<td>MTP</td>
<td>cy s>sol</td>
</tr>
<tr>
<td>31, M</td>
<td>seizures</td>
<td>no deficit</td>
<td>complete</td>
<td>astrocytoma II.</td>
<td>1.5 cm</td>
<td>uncus</td>
<td>sol>cy s</td>
</tr>
<tr>
<td>19, F</td>
<td>seizures</td>
<td>temp HP</td>
<td>complete</td>
<td>ganglioglioma</td>
<td>2 cm</td>
<td>TM</td>
<td>sol=cy s</td>
</tr>
<tr>
<td>44, F</td>
<td>seizures</td>
<td>no deficit</td>
<td>complete</td>
<td>cavernoma</td>
<td>3 cm</td>
<td>TM</td>
<td>sol</td>
</tr>
<tr>
<td>39, M</td>
<td>seizures</td>
<td>no deficit</td>
<td>complete</td>
<td>ganglioglioma</td>
<td>2.5 cm</td>
<td>TM</td>
<td>sol</td>
</tr>
<tr>
<td>56, F</td>
<td>seizures</td>
<td>no deficit</td>
<td>complete</td>
<td>astrocytoma II.</td>
<td>3 cm</td>
<td>MTP</td>
<td>sol>cy s</td>
</tr>
<tr>
<td>37, F</td>
<td>seizures</td>
<td>no deficit</td>
<td>complete</td>
<td>cavernoma</td>
<td>4 cm</td>
<td>uncus</td>
<td>lobulated</td>
</tr>
</tbody>
</table>

Abbreviations: cy s = cystic; F = female; HP = hemiparesis; HV = highly vascularized; M = male; MTP = medial temporopolar; NPF = no pathological findings; PC = primary complete; PH = parahippocampal; sol = solid; temp = temporal; TM = temporomesial

Fig. 3 MRI showing a temporomesial located cavernoma of the left dominant side (A). After surgery, no residual cavernoma could be detected (B). Patients postoperative course was uneventful: note undamaged appearance of the left dominant and temporal operculum. The supraorbital subfrontal access allowed optimal surgical exposure, thus avoiding approach related injury of these eloquent structures. Imaging was performed in the Department of Neuroradiology, Johannes Gutenberg-University, Mainz. Courtesy of Prof. W. Müller-Forell.

Fig. 4 Three-dimensional presentation of the cavernoma. Using virtual reality workstation, the optimal surgical way could be analyzed and defined. Note the relationship of the cavernoma (purple) to the ventricles (green), optic nerves (yellow) and to the bony skull base in an anterior (a) and anterior-superior (b) view. Special attention should be given to the sphenoid wing and to temporobasal extension of the lesion (c). Lateral view with additional visualization of the skin surface (d) offers exact planning of the tailored minimal invasive approach.
temporomesial region. The retroflexion supported gravity-related retropulsion of the frontal lobe.

The skin incision was started laterally from the supraorbital incisura within the eyebrow. To achieve a cosmetically optimal result, the incision followed the orbital rim (Fig. 5a). After skin incision, the subcutaneous dissection was continued in the frontal direction to achieve optimal exposure of the frontolateral supraorbital area. The frontal muscle was then cut with a monopolar knife parallel to the orbital rim in a medial to lateral direction. The cutting then followed the temporal line in a basal direction to the zygomatic process of the frontal bone. In this way, the frontozygomatic part of the temporal muscle was stripped from its bony insertion; the muscles were mobilized with periostal dissector (Fig. 5b). After muscular dissection, a single frontobasal burr hole was made using a high-speed drill. After minimal enlargement of the hole with a small punch and mobilization of the dura, a C-shaped line was cut with a high-speed craniotome defining the size and form of the craniotomy. Thereafter a straight line was created parallel to the orbital rim in a lateral to medial direction, taking into account the previously performed C-shaped line (Fig. 5c). A very important stage of the craniotomy after removal of the bone flap was high-speed drilling of the inner edge of the bone above the orbital rim under protection of the dura. Careful removal of this inner bone edge can significantly increase the angle for visualization and manipulation. Small osseous extensions of the superficial orbital roof, so-called juga cerebralia, were drilled extradurally to obtain optimal intradural visualization (Fig. 5d). Thereafter, the dura was opened in a simple C-shaped form and retracted in a basal direction (Fig. 5e).

Cerebrospinal fluid was removed by opening the carotid cisterns, exposing the internal carotid artery and optic nerve (Fig. 5f). Thereafter, the medial part of the Sylvian fissure was opened in a medial to lateral direction. An endoscope was then introduced into the surgical field for optimal visualization (Aesculap AG, Tuttligen, Germany). Note the appearance of the chiasmatic cistern (Fig. 5g) and the left carotid artery and optic nerve (Fig. 5h). Moving more in a lateral direction, the temporal pole was observed. Note the yellowish cortical surface according to the exact localization of the cavernoma (Fig. 5i). Using this technique, the temporopolar and temporomesial regions were effectively exposed from the anterior subfrontal.
direction, without approach-related traumatization of the Sylvian veins, the eloquent frontotemporal operculum and the temporal lobe. Endoscopic images demonstrated the four main advantages of endoscopes including increased light intensity, extended viewing angle with potential direct visualization of hidden parts of the field and clear depiction of details in close-up positions. After endoscopic orientation, the operation was continued in microsurgical technique, exposing the anterior surface of the cavernoma (Fig. 5j). The temporal veins and the middle cerebral artery with its critical perforators are not injured by the subfrontal dissection. According to the ideal surgical exposure, the lesion could be dissected from the surrounding brain tissue effortlessly (k). After complete removal of the lesion, the field is again observed with the 0° endoscope. Note the untouched eloquent lateral temporal and frontobasal cortical surface (l). Exposing the cavity of resection in close-up position, no residual cavernoma could be detected; for observation of hidden parts of the field, a 30° endoscope was used (m). Note the choroid plexus of the lateral ventricle and yellowish surface of the hippocampus (n). After finishing of the intracranial procedure and adequate hemostasis (o), the dura mater is closed with watertight sutures. Note the size of the dural opening, according to the limited craniotomy (p). The bone flap is re-implanted and fixed with Cranio-Fix (B. Braun/Aesculap, Tuttlingen, Germany) plates. Note that the primary burr hole is closed with the plate and the bone flap tightly fixed both medially and frontally to achieve optimal cosmetic results (q). After final verification of haemostasis, the muscular and subcutaneous layers are closed with interrupted sutures and the skin with intracutaneous sutures (r). According to the minimal osteomuscular destruction, no suction drain is used.

Results

In 14 patients, the anterosuperior localized tempromesial lesions could be safely and effectively exposed via the supraorbital craniotomy without traumatization of the eloquent dominant temporolateral cortex. The early postoperative MRI revealed adequate cosmetic outcome (Fig. 5q). After final verification of hemostasis, the muscular and subcutaneous layers were closed with interrupted and the skin with intracutaneous sutures. After surgery the patient was observed overnight in the neurosurgical intensive care unit, neurological examination revealed no pathological findings. Especially no speech or cognitive deficits could be exposed. The early postoperative contrast enhanced MRI 24h after surgery revealed the complete resection of the cavernoma (Fig. 3B). Four weeks after surgery the patient returned to her previous employment. Six months postoperatively the anticonvulsive therapy was stopped, without recurrent seizures.
in 14 cases complete tumour removal, in 1 case subtotal resection could be detected. In this case, the posterior aspect of the tumor within the parahippocampal gyrus could not be removed; a re-operation was made through a posterior subtemporal transtemporal approach and complete tumor removal was achieved. No intraoperative complications occurred, re-modelling of the craniotomy was not necessary.

The postoperative neurological examination revealed a transient hemiparesis in one patient; in this case the tumor reached the lateral aspect of the cerebral peduncle; however, the patient was neurologically intact at discharge. In all other patients no neurological deficits were observed, especially, neither speech deficits nor memory disturbances could be observed.

There were no surgical complications during the postoperative period; cerebrospinal fluid fistulas or wound healing disturbances could not be observed. In all cases the cosmetic outcome was excellent.

Pathological investigations showed 7 low-grade astrocytomas, 4 high-grade astrocytomas, 2 gangliogliomas and 2 cavernomas. The patients with glioblastomas received postoperative radiotherapy and chemotherapy according to the EORTC protocol (Table 1).

Discussion

Although the temporomesial region can be surgically exposed via subtemporal, transtemporal or pterional-transsylvian approaches, the traumatization of the eloquent dominant temporal lobe and retraction of the frontotemporal operculum can subsequently cause postoperative neurological deterioration among patients [6,10–12]. Gleissner pointed out a functional association of verbal memory with the left-sided temporal lobe, on operating pediatric and adult patients with temporal lobe epilepsy [8]. Helmstaedter described significant memory impairment with negative effects on learning and consolidation/retrieval after left anterior temporal lobectomy [9]. Clusmann reported on more beneficial neuropsychological results after surgical resections limited to a temporal lesion itself without traumatization of the surrounding brain tissue [13]. These occasionally severe symptoms of speech, memory and cognitive disorders are unacceptable if the target area can also be exposed via a different, less invasive but comparably effective approach. The reduction of brain exploration and retraction is essential, exposing dominant hemispheric temporomesial structures [3,4]. With the knowledge of specific anatomic details of an individual patient, an individual surgical procedure can be performed to reducing the size of the craniotomy, the extent of brain surface exploration, and retraction to a necessary minimum limit [14–17].

The subfrontal exposure was first published by Fedor Krause in the first volume of his pioneering work “Surgery of the Brain and Spine”, published in 1908 [18]. Although his operation was rough and traumatic according to the undeveloped macrosurgical techniques of that time, Krause has already realized the potential of the subfrontal exposure, namely the free surgical access from an anterior direction to the suprasellar and medial temporal structures without dissection and retraction of the temporal lobe.

During the last decades, a variety of subfrontal approaches have been described in the neurosurgical literature, although differently named the exposures were in the fact quite similar. Brock published in 1978 a revolutionary minimally invasive concept approaching aneurysms of the anterior circulation via a limited lateral subfrontal craniotomy [19]. In 1982 Jane reported a supraorbital exposure to aneurysms and other lesions of the suprasellar area as well as to orbital lesions [20]. This approach was modified by Delashaw to involve fracturing the orbital roof or including a temporal extension of the craniotomy [21,22].

The inferior extension of the supraorbital craniotomy by removal of the orbital rim was also described by Delfini using an alternative technique with two bone flaps [23]. Al-Mefty published his experience concerning a supraorbital-pterional approach, Smith described extended temporal and orbitozygomatic bone removal [24,25].

Recent publications on the subfrontal exposures describe limited skin incision and soft tissue dissection with limited craniotomy and brain retraction in accordance with the enormous development of diagnostic facilities and neurosurgical techniques [14,26–29]. In 1998 van Lindert reported surgical experience using a supraorbital subfrontal craniotomy with eyebrow skin incision for the treatment of 197 intracranial aneurysms, Czirjak published his experiences in 2001 and 2002, Ramos-Zúñiga presented a transsupraorbital approach [29–32]. In 2001, Steiger described his small orbitocranial approach through a frontotemporal hairline incision, approaching aneurysms of the anterior communicating artery [33].

We have demonstrated the concept and surgical technique of the supraorbital keyhole approach using minimally invasive techniques [34–36]. In 2005, our ten-year expertise with the supraorbital subfrontal approach through an eyebrow skin incision was summarized [37]. Recently, our experience with aneurysms of the middle cerebral artery was reported, thus treating bilateral aneurysms through unilateral supraorbital approach [38].

In this clinical series, we could demonstrate that anterosuperior located temporomesial lesions of the dominant hemisphere can effectively be approached through a limited supraorbital keyhole craniotomy. In 14 of 15 cases complete removal of the lesion was achieved. The supraorbital key-hole approach allowed adequate exposure and safe resection of dominant hemispheric antero-superior situated temporomesial lesions, according to the concepts of minimally invasive key-hole neurosurgery. No postoperative mortality and no permanent morbidity could be observed in our 15 patients, especially no verbal or memory disturbances due to the absence of traumatization of the dominant temporal lobe and frontotemporal operculum.

Still, we identified limits for this surgical technique. The supraorbital approach was only used in cases with a strict anterior temporomesial localization of the lesion. A posterior mesial extension of the lesion within the parahippocampal gyrus or a deep temporobasal tumor growth below the sphenoid wing seemed to limit the feasibility of the supraorbital approach. However, using neuronavigation and endoscopes, the utility of the supraorbital key-hole approach can successfully be extended. To the best of our knowledge there has been no previous report of temporomesial lesions exposed and treated successfully using a supraorbital craniotomy.

Only a limited number of patients could be included in this study, because of the meticulous preoperative planning and selection of patients necessary to justify the feasibility of the approach. Further data collections with more surgical cases are required to evaluate the effectiveness of the supraorbital cranio-
tomy in patients with dominant hemisphere temporomesial lesions.

Conclusions

The supraorbital key-hole approach allowed adequate exposure and safe resection of dominant hemispheric anterosuperior situated temporomesial gliomas, according to the concept of the minimally invasive key-hole neurosurgery.

Acknowledgements

We gratefully acknowledge the constant and inspiring support of our former chairman and teacher Axel Perneczky. He died in a tragic way; his pupils will never forget him.

References